专利摘要:
A system includes a first unitary measurement strip configured to be secured about a rotational component at a first axial location. The first unitary measurement strip includes a first set of one or more windows, each window of the first set of one or more windows is configured to correspond to a first respective tangential location of the rotational component at the first axial location, and each window of the first set of one or more windows is configured to be detectable via a first sensor.
公开号:DK202070704A1
申请号:DKP202070704
申请日:2020-10-26
公开日:2020-11-02
发明作者:Verle Jensen Raymond;Kelly Summers Sean;Terrance Hatch Charles
申请人:Gen Electric;
IPC主号:
专利说明:

[0001] [0001] The subject matter disclosed herein relates to systems and methods for monitoring rotation of components in rotary equipment.
[0002] [0002] Rotary equipment, such as turbomachinery, has one or more rotating components, such as a shaft, a rotor, an impeller, compressor blades, turbine blades, or wheels. The operational parameters of the rotating components may be described by one or parameters, such as rotational speed and torque. Unfortunately, complex machinery such as gas turbine engines may complicate the use of monitoring equipment due to the size, complexity, and precision of rotating components. Therefore, it may be desirable to improve the monitoring of rotating components while reducing the cost, size, load, stress, and overall impact of the monitoring equipment on the rotating components.SUMMARY OF THE INVENTION
[0003] [0003] Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to — provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
[0004] [0004] In a first aspect of the invention, a system includes a first measurement strip configured to be secured about a rotational component at a first axial location. The first measurement strip includes a first set of one or more windows, each window of the first set of one or more windows is configured to correspond to a first respective tangential location of the rotational component at the first axial location, and each window of the first set of one or more windows is configured to be detectable via a first sensor. In embodiments, the measurement strip may be a unitary measurement 1
[0005] [0005] In a second aspect of the invention, a system includes a first measurement strip configured to be secured about a rotational component at a first axial location, wherein the first measurement strip includes a first set of one or more windows, and each window of the first set of one or more windows is configured to correspond to a first respective tangential location of the rotational component at the first axial location. The system also includes a first sensor configured to transmit first operational feedback based at least in part on when the first rotational sensor detects each window of the first set of one or more windows from a radial direction. The system also includes a controller coupled to the first sensor and configured to determine an operational parameter of the rotational component based at least in part on the first operational feedback. In embodiments, the measurement strip may be a unitary measurement strip. The system may be rotational system. Further, the system may be a rotational monitoring system. Preferred embodiments of this aspect of the invention are specified in claims 9-12 below. The technical features of these embodiments may further be implemented in a system according to the above summarized a first aspect of the invention. The technical features of these embodiments may further be implemented in a method according to a further aspect ofthe invention as summarized just below.
[0006] [0006] In a third aspect of the invention, a method includes determining an operational parameter of a rotational component with a first measurement strip secured about the rotational component at a first axial location. The first measurement strip includes a first set of one or more windows, each window of the first set of one or more windows is configured to correspond to a first respective tangential location of the rotational component at the first axial location, and each 2
[0007] [0007] These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
[0008] [0008] FIG. I is a schematic diagram illustrating an embodiment of a monitoring system, in accordance with aspects of the present disclosure;
[0009] [0009] FIG. 2 is a perspective view of an embodiment of the monitoring system with measurement strips about a shaft;
[0010] [0010] FIG. 3 is an assembly view of an embodiment of the monitoring system — with bands to secure the measurement strip to the shaft; and
[0011] [0011] FIG. 4 is a perspective view of an embodiment of the formation of a measurement strip.DETAILED DESCRIPTION
[0012] [0012] One or more specific embodiments of the present invention will be — described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as 3
[0013] [0013] When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are — one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
[0014] [0014] Sensors of a monitoring system provide feedback to a controller (e.g., a processor-based industrial controller) to determine operational parameters (e.g. rotational parameters, environmental parameters) of rotating components. For example, the rotating components may include shafts, rotors, wheels, impellers, or rotary blades (e.g., compressor or turbine) of rotary machines, such as turbines, compressors, pumps, generators, motors, or various turbomachinery. One or more windows detectable by a sensor of the monitoring system are disposed about a rotating component. Each sensor provides feedback to the controller when the respective sensor senses a window (e.g., when the window traverses the sensor). As the rotating component rotates about an axis, the controller determines operational parameters (e.g., rotational parameters) based at least in part on the received feedback over a time period. In some embodiments, the rotational parameters that the controller may determine include, but are not limited to, rotational speed, non- rotation, differential (e.g., thermal) expansion and contraction, changes in rotational direction, changes in speed, torque, angle of twist, changes in torque, torsional vibration, or any combination thereof.
[0015] [0015] The controller may determine the operational parameters (e.g., rotational parameters, environmental parameters) by observing the frequency at which one or 4
[0016] [0016] A measurement strip with the one or more windows as described herein may be formed from a flexible sheet by laser cutting, water-jet cutting, stamping, machining, plasma cutting, or another removal process. In some embodiments, the measurement strip and/or the one or more windows of the measurement strip may be — formed from an additive process, such as welding, brazing, application of an adhesive, layered deposition (e.g., 3D printing), or any combination thereof. The measurement strip may be secured to the rotating component (e.g., shaft) at an axial location, such that the one or more windows correspond to respective tangential locations on the rotating component (e.g., shaft). Measurement strips as described herein secure the one or more windows to the rotating component (e.g., shaft) with a reduced effect on the rotordynamic response as compared with machined wheels. The measurement strip may be a unitary component that may be arranged about the rotating component (e.g., shaft) from a radial direction. Radial installation of the unitary measurement strip enables the one or more windows to be arranged about a rotating component (e.g, shaft) of an assembled rotational system with limited access to the shaft.
[0017] [0017] Turning to the drawings, FIG. 1 is a schematic diagram that illustrates an embodiment of a rotational system 10 (e.g., rotary machinery such as turbomachinery) and a rotational monitoring system 12. In the rotational system 10, a driver 14 rotates a shaft 16 coupled to one or more loads 18. The driver 14 may include, but is not limited to, a gas turbine, a steam turbine, a wind turbine, a hydro turbine, a reciprocating engine (e.g., diesel, gasoline, pneumatic), an electric motor, or any combination thereof. The driver 14 provides a rotational output via the shaft 16 to the one or more loads 18, each of which may include, but is not limited to, a vehicle or a stationary load. In some embodiments, the one or more loads 18 may include a propeller on an aircraft, an electrical generator in a power plant, a compressor, a pump, a fan, a machine, any suitable device capable of being powered by the 5
[0018] [0018] The monitoring system 12 monitors the rotational system 10 and determines one or more operational parameters of components (e.g., driver 14, shaft 16, load 18) of the rotational system 10. Operational parameters may include rotational parameters, such as rotational speed, non-rotation, axial or radial expansion, axial or radial contraction, changes in rotational direction, changes in speed, torque, angle of twist, changes in torque, torsional vibration, or any combination thereof. Operational parameters may also include environmental parameters, such as differential expansion (e.g., thermal expansion and thermal contraction). One or more sensors 24 arranged along the rotational system 10 sense one or more windows 26 arranged at specific locations (e.g., tangential or circumferential locations relative to a reference angle) of the rotational system 10. For example, the windows 26 may be circumferentially spaced at different angular positions or spacings circumferentially about the axis 20. Each sensor 24 transmits feedback to a controller 28 based at least in part on when the respective sensor 24 senses a window 26 as the windows 26 rotate about the axis 20. In some embodiments, multiple sensors 24 may be arranged at an axial position to monitor one set of windows 26. For example, sensors 24 may be arranged on opposite sides or orthogonal sides of a rotational component (e.g., shaft 16), thereby enabling the monitoring system 12 to reduce or eliminate timing distortions due to radial vibration of the rotational component.
[0019] [0019] A processor 30 of the controller 28 determines one or more operational parameters from the received feedback. The controller 28 may store received feedback and/or instructions or code for processing the received feedback in a non- transitory machine-readable medium 32, such as memory. The non-transitory machine-readable medium 32 (e.g., memory) does not include transitory signals, and may be volatile memory or non-volatile memory. In some embodiments, the non- transitory machine-readable medium 32 may include, but is not limited to, random access memory (RAM), read-only memory (ROM), flash memory, a hard drive, or 6
[0020] [0020] Each of the one or more windows 26 is arranged on a measurement strip 34 (e.g, an annular measurement strip 34), which is secured about a rotating component (e.g., driver 14, shaft 16, load 18) of the rotational system 10. As discussed in detail below, the one or more windows 26 include, but are not limited to, recesses fully or partially through the measurement strip 34, raised portions of the measurement strip 34, or differently textured portions of the measurement strip 34, or any combination thereof. In some embodiments, the measurement strip 34 may have one or more layers, and a layer within the measurement strip 34 may have voids and/or inserts. The voids and/or inserts may have different characteristics (e.g., electrical conductivity, magnetic reluctance) relative to other layers or portions of the measurement strip 34. The one or more sensors 24 may sense the voids and/or inserts as windows 26. The one or more windows 26 are arranged to be detectable from a radial direction 36 by the one or more sensors 24. For example, each of the one or more sensors 24 may include an eddy current sensor, a capacitance sensor, a magnetic reluctance sensor, a contact sensor, or a displacement sensor, or any combination thereof. During operation, one or more of the windows 26 may become partially obstructed with debris (e.g., lubricant, dust, particulates). Accordingly, a non-optical sensor 24 (e.g., eddy current sensor, capacitance sensor, magnetic reluctance sensor) may sense the one or more partially obstructed windows 26 despite the debris.
[0021] [0021] The monitoring system 12 may determine one or more operational parameters of a rotational component (e.g., driver 14, shaft 16, load 18) with one or more secured measurement strips 34 utilizing feedback received from the one or more sensors 24. The monitoring system 12 may determine the rotational speed (e.g., rotations per minute (RPM)) or a non-rotation condition of a rotational component (e.g., shaft 16) via observing the frequency at which a first window 38 on a first measurement strip 40 is sensed during an observation period. In some embodiments, the monitoring system 12 may determine the thermal expansion or thermal contraction of the shaft 16 based at least in part on sensing the first window 38 with a first sensor 7
[0022] [0022] The monitoring system 12 may determine reverse rotation and changes in the rotational speed via observing the frequency and/or sequence at which multiple windows 26 of the first measurement strip 40 are sensed during an observation period. For example, a second window 48 on the first measurement strip 40 may have a — different geometry and/or orientation than the first window 38. The controller 28 may determine the rotational direction based at least in part on the sequence the first sensor 42 senses the first and second windows 38, 48. Additionally, the controller 28 may determine the rotational speed of the shaft 16 multiple times per revolution of the shaft 16 based at least in part on feedback corresponding to the first and second — windows 38, 48. For example, the controller 28 may determine the rotational speed of the shaft 16 utilizing frequency of observing the first window 38, frequency of observing the second window 48, and/or elapsed time between observations of the first window 38 and the second window 48.
[0023] [0023] In some embodiments, the monitoring system 12 may include multiple measurement strips 34, each measurement strip 34 having one or more windows 26. The monitoring system 12 may determine rotational conditions such as torque and torsional vibration based at least in part on feedback corresponding to windows 26 on different measurement strips. Torque on the shaft 16 during operation of the rotational system 10 may twist the shaft 16 about the axis 20 between the driver 14 and a first load 49. As discussed in detail below, the controller 28 may utilize feedback from the first sensor 42 sensing the first measurement strip 40 and from a second sensor 50 sensing a second measurement strip 52 to determine the torque on the shaft 16 and/or torsional vibration of the shaft 16. In some embodiments, windows 26 at different axial locations are aligned tangentially, thereby enabling the monitoring system 12 to observe the aligned windows substantially simultaneously when the rotating component is not twisted about the axis 20. The controller 28 may 8
[0024] [0024] FIG. 2 illustrates a perspective view of an embodiment of the rotational system 10 with the rotational monitoring system 12. The driver 14 rotates the shaft 16 and the load 18 about the axis 20 in a first tangential direction 60 and/or a second tangential direction 62. Cylindrical-polar coordinate axes 64 depicts the longitudinal (e.g., axial) axis 66 along the axis 20, a radial axis 68, and an angular (e.g., tangential) component 70 relative to a reference angle 72. The first measurement strip 40 may be secured to the shaft 16 such that the first window 38 is aligned with the reference angle 72. In some embodiments, the monitoring system 12 may relate a first edge 74 of the first window 38 to a zero-orientation (e.g., 0°) of the shaft 16. The third window 54 on the second measurement strip 52 may also be aligned with the reference angle 72 (e.g., tangential location). That is, each window 26 may be aligned with a corresponding tangential location of the rotating component when the rotating component is at rest (e.g., substantially no torque on shaft 16). For example, a second edge 76 of the third window 54 may be aligned with the reference angle 72 when the shaft 16 is not rotating. Upon rotation of the shaft 16, the torque on the shaft 16 > between the driver 14 and the load 18 may twist the shaft 16. The torque on the shaft 16 may displace the second edge 76 by an arc distance 78 relative to the first edge 74 and the reference angle 72. The controller 28 may determine the angle of twist from the arc distance 78, and the controller 28 may determine the torque on the shaft 16 based at least in part on the arc distance 78, a distance 80 between the first window 38 and the third window 54, a material of the shaft 16, and a structure (e.g., solid, hollow, circular, square) of the shaft 16. In some embodiments, the controller 28 may 9
[0025] [0025] The controller 28 may determine torsional vibration on the shaft 16 by — comparison of the feedback received from the first sensor 42 to the feedback received from the second sensor 50. As may be appreciated, the first sensor 42 may detect the first edge 74 at a first time (T1), and the second sensor 50 may detect the second edge 76 at a second time (T>). Changes in torque on the shaft 16 may result in differences between Ti and T,> while the rotational speed changes. The controller 28 may determine the arc distance 78 and/or the angle of twist between the first measurement strip 40 and the second measurement strip 52 from the differences between Ti and Ts. In some embodiments, the first sensor 42 may detect a third edge 79 of the second window 48 at a third time (T;). Differences between Ti and Ts (e.g., AT) during operation of the rotational system 10 may identify a torsional vibration rotational parameter. The controller 28 may determine a magnitude and/or a source of the torsional vibration by evaluating changes to AT over a time period (e.g., 0.1 seconds,
[0026] [0026] Embodiments with multiple windows 26 on each measurement strip 34 may enable the monitoring system 12 to determine rotational parameters (e.g., the torque and/or torsional vibration) with more precision and/or more accuracy than embodiments with only a first window 38 and a third window 54. Additionally, multiple windows 26 increase the available feedback to the monitoring system 12, 10
[0027] [0027] In some embodiments, the first window 38 has a second edge 82 that is oblique relative to the first edge 74 and the axis 20. As may be appreciated, the shaft 16 may expand axially as the temperature of the shaft 16 increases, and contract axially as the temperature of the shaft 16 decreases. When the shaft 16 is at a first temperature (e.g., 20 degrees C), the first sensor 42 senses a first arc 84 length between the first edge 74 and the second edge 82. When the shaft 16 is at a second temperature (e.g., 50 degrees C), the first sensor 42 senses a second arc length 86 — between the first edge 74 and the second edge 82. The first measurement strip 40 is secured to the shaft 16 at a first axial location 88 along the shaft 16, and the second measurement strip 52 is secured to the shaft 16 at a second axial location 90. Based at least in part on the detection of the first window 38, the controller 28 may determine a length of the shaft 16 and/or the distance 80 between the first and second axial locations 88, 90. Additionally, or in the alternative, the controller 28 may determine changes to a length of the shaft 16 and/or the distance 80 due to torque on the shaft
[0028] [0028] In some embodiments, the sensors 24 sense a distance 92 between the sensor 24 and the measurement strip 34. As may be appreciated, the shaft 16 may expand and contract in the radial direction 68 with temperature or torque variations on the shaft 16. The distance 92 may correspond to a radial clearance 96 between a 11
[0030] [0030] The measurement strip 34 is a separate component from the rotary component (e.g., shaft 16) that may be removably or fixedly secured to the rotary component (e.g., shaft 16). In some embodiments, the measurement strip 34 is disposed about substantially all (e.g., greater than 270°) of the shaft 16 at the axial location 104. A first end 106 of the measurement strip 34 may interface with a second — end 108 of the measurement strip 34 when the measurement strip 34 is secured about the shaft 16. For example, the first end 106 may mate with the second end 108. In some embodiments, the securing mechanism 100 to secure the measurement strip 34 about the shaft is a bond between the first end 106 and the second end 108. For example, the securing mechanism 100 may include, but is not limited to a weld, a braze, an adhesive, an interference fit via heat treatment, or any combination thereof. In some embodiments, the first and second ends 106, 108 may accommodate a fastener 110 (e.g., screw, bolt, snap, clasp, hook) to secure the measurement strip 34 about the shaft 16.
[0031] [0031] Additionally, or in the alternative, one or more bands 112 may secure the measurement strip 34 about the shaft 16. Each band 112 may be tightened about the measurement strip 34 and the shaft 16, thereby securing the measurement strip 34 at the axial location 104. Each band 112 may include a fastener 110 (e.g., screw, bolt, clip, button) to close the band 112 about the measurement strip 34. In some embodiments, a nut 114 couples with the fastener 110 to tighten the band 112 about the measurement strip 34. The fasteners 110, the nuts 114, and/or the bands 112 may have tethers 116 to secure the connection with the shaft 16 should the fastener 110, 13
[0032] [0032] The bands 112 may be arranged to secure the measurement strip 34 such that the windows 26 are detectable from the radial direction 68. As discussed above, — the first window 38 is to be secured about the shaft 16 such that the first edge 74 corresponds to a reference angle 72 (e.g., 0°). In some embodiments, the first window 38 may be different from the other windows 26, such as having a sub-window, to identify the first window 38 among the other windows 26. Each of the other windows 26 may be spaced apart from the first window 38 by a defined arc distance 122 and/or angle 70. In some embodiments, the spacing between the windows 26 may be uniform. For example, the measurement strip 34 illustrated in FIG. 3 has eight sets of windows 26 spaced 45° apart. Presently contemplated embodiments may include, but are not limited to, windows 26 spaced apart by approximately 5°, 10°, 15° 20° 30° 40°, 50%, 60%, 90%, or more, or any combination of such spacings. Accordingly, the — monitoring system 12 may determine some operational parameters (e.g., speed, angular position) at least eight times per revolution of the shaft 16. Additionally, or in the alternative, the spacing between the windows 26 may be non-uniform. For example, the spacing between sequential windows 26 may increase by approximately
[0033] [0033] Some embodiments of the measurement strip 34 may be formed from sheet metal or another relatively thin material with respect to the radius 103 of the shaft 16. For example, a thickness 126 of the measurement strip 34 may be less than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% of the radius 103 of the rotating component. In some embodiments, a thickness 126 of the measurement strip 34 may be less than approximately 19 mm, 12.7 mm, 6.4 mm, 3.2 mm, 1.6 mm, 0.4 mm, or less (e.g, approximately 0.75 in, 0.5 in, 0.25 in, 0.125 in, 1/16 in, 1/64 in, or less). The mass of the measurement strip 34 may be an insignificant contribution to the mass and the inertia of the rotational system 10 or the rotation component (e.g., shaft 16) to which — the measurement strip 34 is secured. For example, the mass of the measurement strip 34 may be less than 0.01, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% of the mass of the rotational system 10 or the rotating component (e.g., shaft 16) to which the measurement strip 34 is secured. Accordingly, the mass of the measurement strip 34 may have a substantially negligible effect on the rotordynamic response of the rotational system 10.
[0034] [0034] FIG. 4 illustrates an embodiment of the formation of the measurement strip
[0035] [0035] Technical effects of the invention include that the measurement strip 34 may be formed from one piece of material (e.g., rolled sheet 130) and may be secured to an axial location 104 of a rotating component from an axial or radial direction with minimal effect on the rotordynamic response of the rotating component due to the size and mass of the measurement strip 34. The unitary construction, size, and flexibility of the measurement strip 34 may enable a technician to install the measurement strip 34 with less time, less effort, and/or at a lower cost than installation of a split machined wheel or machined shaft of a rotational system. The technician may form the windows 26 on the measurement strip 34 to a desired tolerance level utilizing a variety of tools and processes for a lower cost than precision machining the shaft 16 and/or a machined split wheel with the same desired tolerance level. One or more measurement strips 34 as described herein may be utilized to determine one or more operational parameters of the rotational system, including, but not limited to rotational speed, non-rotation, differential expansion, changes in rotational direction, changes in speed, torque, changes in torque, torsional vibration, or any combination thereof.
[0036] [0036] This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include 16
DK 2020 70704 A1 equivalent structural elements with insubstantial differences from the literal language of the claims. 17
权利要求:
Claims (14)
[1] 1. A system comprising: a first unitary measurement strip (34, 40) configured to be secured about a rotational component (14, 16, 18) at a first axial location (88), the first unitary measurement strip having a thickness wherein the first unitary measurement strip (40) comprises a first set of one or more windows (26) formed in the first unitary measurement strip prior to attachment to the rotational component, each window of the first set of one or more windows is configured to correspond to a first respective tangential location of the rotational component at the first axial location, and wherein each window of the first set of windows comprises a recess through an entirety of the thickness of the first unitary measurement strip and each window of the first set of one or more windows is configured to be detectable via a first non-optical sensor (24, 42) and comprising one or more bands (112) configured to secure the first unitary measurement strip (34, 40) about the rotational component (14, 16, 18), wherein each — band of the one or more bands comprises a fastener (110), and a second unitary measurement strip (34, 52) configured to be secured about the rotational component (14, 16, 18) at a second axial location (90), wherein the second unitary measurement strip (52) comprises a second set of one or more windows (26), each window of the second set of one or more windows is configured to correspond to a second respective tangential location of the rotational component at the second axial location (90), wherein each window of the second set of windows comprises a recess through an entirety of the thickness of the second unitary measurement strip, and the second set of one or more windows is configured to be detectable via a non-optical second sensor (24, 50), the first unitary measurement strip (34, 40) and the second unitary measurement strip (34, 52) being positioned on at least one of the rotational components (14, 16, and 18) where the first unitary measurement strip (34, 40) and second unitary measurement strip (34, 52) are placed on the same rotational component (14, 16, 18). 18
DK 2020 70704 A1
[2] 2. The system according to claim 1, wherein the first unitary measurement strip (40) comprises a first length (132) approximately equal to a circumference of the rotational component (14, 16, 18).
[3] 3. The system according to any one of the claims 1-2, wherein the first unitary measurement strip (34, 40) is configured to be secured about the rotational component (14, 16, 18) at the first axial location (88) via a weld, an adhesive material, or a brazed material, or any combination thereof.
[4] 4. The system according to any one of the claims 1-3, wherein each window (26) of the first set of one or more windows is spaced uniformly along the first unitary measurement strip (34, 40).
[5] 5. The system according to any one of the claims 1-3, wherein the first set of one or more windows (26) are non-uniformly spaced along the first unitary measurement strip (34, 40).
[6] 6. The system according to any one of the claims 1-5, wherein the first set of one or more windows (26) comprises a first window (38) configured to identify — areference location (72) of the rotational component, and the first window is different than other windows of the first set of one or more windows.
[7] 7. The system according to any one of the claims 1-6, comprising the first non-optical sensor (42), wherein the first non-optical sensor (42) comprises an eddy current sensor, a capacitance sensor, a magnetic reluctance sensor, or any combination thereof.
[8] 8. A system comprising: a first unitary measurement strip (34, 40) configured to be secured about a rotational component (14, 16, 18) at a first axial location (88), wherein the first unitary measurement strip (40) having a thickness, wherein the first unitary measurement strip comprises a first set of one or more windows (26) formed in the 19
DK 2020 70704 A1 first unitary measurement strip prior to attachment to the rotational component, and each window of the first set of one or more windows is configured to correspond to a first respective tangential location of the rotational component at the first axial location (88); wherein each window of the first set of windows comprises a recess — through an entirety of the thickness of the first unitary measurement strip;
a first non-optical sensor (24, 42) configured to transmit first operational feedback based at least in part on when the first non-optical sensor (42) detects each window (26) of the first set of one or more windows from a radial direction; and a controller (28) coupled to the first non-optical sensor (26) and configured to determine an operational parameter of the rotational component based at least in part on the first operational feedback and comprising one or more bands (112) configured to secure the first unitary measurement strip (34, 40) about the rotational component (14, 16, 18), wherein each band of the one or more bands comprises a fastener (110), and a second unitary measurement strip (34, 52) configured to be secured about the rotational component (14, 16, 18) at a second axial location (90), wherein the second unitary measurement strip having a thickness, wherein the second unitary measurement strip (52) comprises a second set of one or more windows (26), and each window of the second set of one or more windows is configured to correspond to a
— second respective tangential location of the rotational component at the second axial location (90), wherein each window of the second set of windows comprises a recess through an entirety of the thickness of the second unitary measurement strip; and a second non-optical sensor (24, 50) configured to transmit second operational feedback based at least in part on when the second non-optical sensor detects each
— window (26) of the second set of one or more windows;
wherein the controller (28) is coupled to the second non-optical sensor (50) and is configured to determine the operational parameter of the rotational component based at least in part on the second operational feedback, wherein the operational parameter comprises an angle of twist on the rotational component between the first axial location (88) and the second axial location (90), a torque on the rotational
20
DK 2020 70704 A1 component between the first axial location and the second axial location, or any combination thereof and comprising one or more bands (112) configured to secure the first unitary measurement strip (34, 40) about the rotational component (14, 16, 18), wherein each band of the one or more bands comprises a fastener (110), and wherein the first unitary measurement strip (34, 40) and the second unitary measurement strip (34, 52) being positioned on at least one of the rotational components (14, 16, and 18) where the first unitary measurement strip (34, 40) and second unitary measurement strip (34, 52) are placed on the same rotational component (14, 16, 18).
[9] 9. The system according to claim 8, wherein the operational parameter comprises a rotational direction, a rotational speed, a differential expansion, a torsional vibration, or any combination thereof.
[10] 10. — The system according to claim 8 or 9, wherein the first set of one or more windows (26) comprises a first window (38) that is oblique to an axis (20) of the rotational component (14, 16, 18), and the controller (28) is configured to determine differential expansion of the rotational component based at least in part on first operational feedback corresponding to the first window.
[11] 11. The system according to any one of the claims 8-10, wherein the first set of one or more windows (26) comprises a first window (38) and a second window (48), and the operational parameter comprises a change in rotational direction, a change in rotational speed, a change in differential expansion, a change in torsional — vibration, or any combination thereof.
[12] 12. The system according to any one of the claims 8-11, wherein the first non-optical sensor (42) comprises an eddy current sensor, a capacitance sensor, a magnetic reluctance sensor, or any combination thereof.
21
DK 2020 70704 A1
[13] 13. A method comprising: determining an operational parameter of a rotational component (14, 16, 18) with a first unitary measurement strip (34, 40) secured about the rotational component at a first axial location (88), the first unitary measurement strip having a thickness, wherein the first unitary measurement strip (40) comprises a first set of one or more windows (26) formed in the first unitary measurement strip prior to attachment to the rotational component, each window of the first set of one or more windows is configured to correspond to a first respective tangential location of the rotational component at the first axial location (88), and wherein each window of the first set of windows comprises a recess through an entirety of the thickness of the first unitary measurement strip and each windows is configured to be radially detectable via a first non-optical sensor (24, 42) and comprising one or more bands (112) configured to secure the first unitary measurement strip (34, 40) about the rotational component (14, 16, 18), wherein each — band of the one or more bands comprises a fastener (110), and determining a torque between the first axial location (88) and a second axial location (90) on the rotational component (14, 16, 18) or a torsional vibration between the first axial location (88) and the second axial location (90), or an angle of twist on the rotational component between the first axial location (88) and the second axial location (90) with the first unitary measurement strip (40) and a second unitary measurement strip (34, 52), the second unitary measurement strip having a thickness, wherein the second unitary measurement strip (52) is secured about the rotational component at the second axial location (90), the second unitary measurement strip (52) comprises a second set of one or more windows (26), each window of the second set of one or more windows is configured to correspond to a second respective tangential location of the rotational component at the second axial location (90), wherein each window of the second set of windows comprises a recess through an entirety of the thickness of the unitary measurement strip, and each window of the second set of one or more windows is configured to be radially detectable via a — second non-optical sensor (50), the first unitary measurement strip (34, 40) and the second unitary measurement strip (34, 52) being positioned on at least one of the rotational components (14, 16, and 18) where the first unitary measurement strip (34, 22
DK 2020 70704 A1 40) and second unitary measurement strip (34, 52) are placed on the same rotational component (14, 16, 18).
[14] 14. The method according to claim 13, wherein the first set of one or more windows (26) comprises a first window (38) and a second window (48), and the operational parameter comprises a rotational direction, a rotational speed, a differential expansion, a torsional vibration, a change in rotational direction, a change in the rotational speed, a change in differential expansion, a change in torsional vibration, or any combination thereof.
23
类似技术:
公开号 | 公开日 | 专利标题
US9176024B2|2015-11-03|Systems and methods for monitoring rotary equipment
US9574570B2|2017-02-21|Shaft speed and vibration sensor apparatus
US9127555B2|2015-09-08|Method for balancing rotating assembly of gas turbine engine
JP2008180697A|2008-08-07|System and method for converting clearance data into vibration data
US20120251300A1|2012-10-04|Journal air bearing for small shaft diameters
US20190128126A1|2019-05-02|Turbine blisk and method of manufacturing thereof
US6409471B1|2002-06-25|Shroud assembly and method of machining same
JP2002256812A5|2002-09-11|
US4576551A|1986-03-18|Turbo machine blading
JP6639264B2|2020-02-05|Nut for fixing compressor impeller, impeller assembly and supercharger
EP2631617B1|2020-10-21|Blade Tip Timing Uncertainty
WO2015142517A1|2015-09-24|Balancing method for a turbocharger
EP2594946A1|2013-05-22|Shaft speed and vibration sensor apparatus
WO2016147849A1|2016-09-22|Rotational solid
EP3309363B1|2022-01-05|Seal cooling
EP2861830B1|2017-09-13|Tip fabrication for rotor blade or stator vane airfoil
US9945386B2|2018-04-17|Real time rotation breakaway detection
JP6390493B2|2018-09-19|Balance inspection device
JP5660292B2|2015-01-28|Balance correction apparatus and method
JP4940186B2|2012-05-30|Sealing device and steam turbine
US20150118031A1|2015-04-30|System and a method of installing a tip shroud ring in turbine disks
US10822978B2|2020-11-03|Revolving part for a turbine test bench for a turbomachine, turbine test bench comprising said part, and method for the use of these
JP2012013596A|2012-01-19|Rotor and balance correction method for the same
JP2747497B2|1998-05-06|Fan for small fan with small shaft
US11141800B2|2021-10-12|Device and method for re-contouring a gas turbine blade
同族专利:
公开号 | 公开日
US20150107342A1|2015-04-23|
CN104570998A|2015-04-29|
DE102014114990A1|2015-04-23|
JP2015081920A|2015-04-27|
US9176024B2|2015-11-03|
DK201470646A1|2015-05-04|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题

JPH0283412A|1988-09-21|1990-03-23|Nissan Motor Co Ltd|Magnetic type rotation sensor|
DE69004131T2|1989-01-17|1994-03-24|Alsthom Gec|Device for determining the position of a rotating steel shaft surrounded by an electrically discontinuously conductive strip, and method for producing the strip.|
US5038616A|1989-11-02|1991-08-13|S & S Technologies|Non-intrusive determination of time varying and steady state torsional load magnitudes and locations of a shaft or system of shafts|
US5137128A|1990-06-20|1992-08-11|Mitsubishi Denki K.K.|Magnetic particle type electromagnetic clutch with torque detector|
US5067355A|1990-07-13|1991-11-26|General Electric Company|Shaft torque measurement|
FR2664691A1|1990-07-16|1992-01-17|Mecagis|Device for producing a signal representative of a displacement|
US5265480A|1990-08-23|1993-11-30|Mazda Motor Corporation|Torque detector|
US5734108A|1992-04-10|1998-03-31|Walker; Dana A.|System for sensing shaft displacement and strain|
TW227601B|1993-01-25|1994-08-01|Gen Electric|
NO300940B1|1994-09-26|1997-08-18|Frantz Karsten Smith|Device for measuring torsion on rotating shafts|
US5675095A|1995-06-30|1997-10-07|Canadian Space Agency|Rotational torque sensor|
ES2163879T3|1997-08-15|2002-02-01|Bishop Innovation Ltd|TORQUE TRANSDUCER|
US6213846B1|1999-07-12|2001-04-10|International Business Machines Corporation|Real-time control of chemical-mechanical polishing processes using a shaft distortion measurement|
US6405696B1|2001-06-28|2002-06-18|Delphi Technologies, Inc.|Spline-type cam phaser|
WO2003083416A1|2002-03-28|2003-10-09|Kabushiki Kaisha Toshiba|Torsional vibration measuring instrument|
US7322250B1|2002-04-09|2008-01-29|Rockwell Automation Technologies, Inc.|System and method for sensing torque on a rotating shaft|
US6782766B2|2002-09-13|2004-08-31|Gastops Ltd.|Apparatus for detecting torque, axial position and axial alignment of a rotating shaft|
US7559258B2|2003-06-12|2009-07-14|Matzoll Robert J|Torque sensor using signal amplitude analysis|
JP2005147812A|2003-11-14|2005-06-09|Tokyo Electric Power Co Inc:The|Torque measuring instrument|
GB0512045D0|2005-06-14|2005-07-20|Equipmake Ltd|Rotation sensing|
US7305949B2|2005-08-18|2007-12-11|Delphi Technologies, Inc.|Stamped target wheel for a camshaft phaser|
KR20080098131A|2007-05-04|2008-11-07|현대중공업 주식회사|Torsional vibration measurement of camshaft using steel band|
US8042412B2|2008-06-25|2011-10-25|General Electric Company|Turbomachinery system fiberoptic multi-parameter sensing system and method|
US8666682B2|2009-07-15|2014-03-04|Michigan Technological University|Rotational torque measurement device|
US20110101964A1|2009-11-05|2011-05-05|Udo Ausserlechner|Magnetic Encoder Element for Position Measurement|
US8203334B2|2010-10-28|2012-06-19|General Electric Company|Magnetically spirally encoded shaft for measuring rotational angel, rotational speed and torque|
DE102011121842A1|2011-12-21|2013-06-27|Robert Bosch Gmbh|Device for measuring torque, direction of rotation and Drehverwidigkeit a shaft of a transmission, in particular an output shaft of an azimuth gear of a wind turbine|
EP2607198B1|2011-12-22|2016-10-12|Aktiebolaget SKF|Encoder device for use in a magnetic sensor arrangement and bearing unit comprising the same|DE102014019546B3|2014-12-23|2016-05-04|Samson Aktiengesellschaft|Spring body for a load cell, such as torque and / or traction / pressure cell|
US9939492B2|2015-05-13|2018-04-10|Schweitzer Engineering Laboratories, Inc.|Electric motor protection using a virtual speed switch|
DE102015012077A1|2015-09-22|2017-03-23|Prüftechnik Dieter Busch Aktiengesellschaft|A method for aligning vertical axes of rotation of a rotatably mounted body and system for use in such a method|
US10063124B2|2015-12-10|2018-08-28|Schweitzer Engineering Laboratories, Inc.|Shaft mounted monitor for rotating machinery|
US10298168B2|2016-07-07|2019-05-21|Schweitzer Engineering Laboratories, Inc.|Slip-dependent motor model|
US10316689B2|2016-08-22|2019-06-11|Rolls-Royce Corporation|Gas turbine engine health monitoring system with shaft-twist sensors|
DE102016217690A1|2016-09-15|2018-03-15|Rolls-Royce Deutschland Ltd & Co Kg|Apparatus and method for measuring a rotational movement, in particular a rotational direction, as well as for detecting a shaft fracture|
US10523150B2|2016-09-15|2019-12-31|Schweitzer Engineering Laboratories, Inc.|Systems and methods for motor slip calculation using shaft-mounted sensors|
IT201600130230A1|2016-12-22|2018-06-22|Nuovo Pignone Tecnologie Srl|PLANT MODULE WITH SENSOR ARRANGEMENT|
CN108005961B|2017-10-31|2019-11-22|沈阳透平机械股份有限公司|Centrifugal compressor with rotor on-line dynamic balancing function|
US10644630B2|2017-11-28|2020-05-05|General Electric Company|Turbomachine with an electric machine assembly and method for operation|
CN109085375B|2018-07-26|2021-05-25|国家电网有限公司|Key phase pulse signal monitoring method and device for rotary machine|
FR3085753B1|2018-09-06|2020-08-14|Safran Aircraft Engines|PROCESS FOR MEASURING CLEARANCE OF A TURBOCHARGER|
FR3085752B1|2018-09-06|2020-08-14|Safran Aircraft Engines|PROCESS FOR MEASURING CLEARANCE OF A TURBOCHARGER|
CN110118582A|2019-06-12|2019-08-13|北京博识创智科技发展有限公司|A kind of rotating machinery fault diagnosis method and system|
NO345480B1|2019-06-28|2021-02-22|Kongsberg Maritime As|Drive shaft monitoring system|
US11218103B2|2019-10-12|2022-01-04|Schweitzer Engineering Laboratories, Inc.|Induction motor slip calculation|
法律状态:
2020-11-02| PAT| Application published|Effective date: 20201026 |
优先权:
申请号 | 申请日 | 专利标题
US14/061,650|US9176024B2|2013-10-23|2013-10-23|Systems and methods for monitoring rotary equipment|
DK201470646A|DK201470646A1|2013-10-23|2014-10-21|Systems and methods for monitoring rotary equipment|
[返回顶部]